Associations of extracurricular physical activity patterns and body composition components in a multi-ethnic population of UK children (the Size and Lung Function in Children study): a multilevel modelling analysis

Abstract:

Background

Body Mass Index (BMI) is a common outcome when assessing associations between childhood overweight and obesity and physical activity patterns. However, the fat and fat-free components of BMI, measured by the Fat Mass Index (FMI) and Fat-Free Mass Index (FFMI), may show contrasting associations with physical activity, while ethnic groups may vary in both physical activity patterns and body composition. Body composition must therefore be evaluated when assessing the associations between childhood overweight and obesity and physical activity in multi-ethnic populations.

Methods

This cross-sectional study investigated associations of BMI, FMI and FFMI z-scores with extracurricular physical activity for 2171 London primary schoolchildren (aged 5–11 years) of black, South Asian and white/other ethnicity. Multilevel mixed-effects ordered logistic modelling was used, adjusting for age, sex and family and neighbourhood socioeconomic status as potential confounders.

Results

Controlling for ethnicity and individual, family and neighbourhood socioeconomic confounders, actively commuting children had significantly lower Odds Ratios for being in high BMI (Odds Ratio (OR) = 0.678; 95 % Confidence Interval (CI) = 0.531 − 0.865; p − value = 0.002) and FMI z-score groups (OR = 0.679; 95 % CI = 0.499 − 0.922; p = 0.013), but not FFMI z-score groups, than passive commuters. Children doing sports less than once a week had lower Odds Ratios for being in high BMI (OR = 0.435; 95 % CI = 0.236 − 0.802; p = 0.008) and FFMI (OR = 0.455; 95 % CI = 0.214 − 0.969; p = .041) z-score categories compared to daily active children. Differences in FMI between groups did not reach the significance threshold. A trend towards statistical significance was obtained whereby children’s complete inactivity was associated with higher odds for being in higher BMI (OR = 2.222 : 95 % CI = 0.977 − 5.052; p = .057) and FMI z-score groups (OR = 2.485 : 95 % CI = 0.961 − 6.429; p = .060). FFMI z-scores did not show a similar trend with complete inactivity.

Conclusions

Active commuting was objectively associated with lower adiposity, while more frequent extracurricular sports participation was correlated with greater fat-free mass accretion. These relationships were independent of ethnicity and individual, family or neighbourhood socioeconomic confounding factors.

Read the Research

 

References:

  1. Sahoo K, Sahoo B, Coudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Family Med Prim Care. 2015;4(2):187–92.

  2. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35:891–8.

  3. Wells JCK, Coward WA, Cole TJ, Davies PSW. The contribution of fat and fat-free tissue to body mass index in contemporary children and the reference child. Int J Obes. 2002;26(10):1323–8.

  4. Nuttall FQ. Body mass index – Obesity, BMI, and Health: A Critical Review. Nutr Today. 2015;50(3):117–28.

  5. Wells JCK, Victoria CG. Indices of whole-body and central adiposity for evaluating the metabolic load of obesity. Int J Obes. 2005;29(5):483–9.

  6. Neovius M, Linné Y, Barkeling B, Rössner S. Discrepancies between classification systems of childhood obesity. Obes Rev. 2004;5(2):105–14.

  7. Must A, Anderson SE. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes. 2006;30:590–4.

  8. CDC – Centers for Disease Control and Prevention. Defining Childhood Obesity. Available from: https://www.cdc.gov/obesity/childhood/defining.html. (Accessed 1 Mar 2019).

  9. Freedman DS, Wang J, Thornton JC, Mei Z, Pierson RN Jr, Dietz WH, et al. Racial/ethnic differences in body fatness among children and adolescents. Obesity. 2008;16(5):1105–11.

  10. Nightingale CM, Rudnicka AR, Owen CG, Cook DG, Whincup PH. Patterns of body size and adiposity among UK children of south Asian, black African–Caribbean and white European origin: child heart and health study in England (CHASE study). Int J Epidemiol. 2011;40(1):33–44.

  11. Hudda MT, Nightingale CM, Donin AS, Fewtrell MS, Haroun D, Lum S, et al. Body-mass index adjustments to increase the validity of body fatness assessment in UK black African and south Asian children: a cross-sectional calibration study. Int J Obes. 2017;41(7):1048–55.

  12. Zilanawala A, Davis-Kean P, Nazroo J, Sacker A, Simonton S, Kelly Y. Race/ethnic disparities in early childhood BMI, obesity and overweight in the United Kingdom and United States. Int J Obes. 2015;39(3):520–9.

  13. Hu FB. Obesity epidemiology. New York: Oxford University Press; 2008.

  14. VanItallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Height-normalized indices of the body’s fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr. 1990;52(6):953–9.

  15. Wells JCK. A critique of the expression of paediatric body composition data. Arch Dis Child. 2001;85(1):67–72.

  16. Drake KM, Beach ML, Longacre MR, MacKenzie T, Titus LJ, Rundle AG, et al. Influence of sports, physical education, and active commuting to school on adolescent weight status. Pediatrics. 2012;130(2):e296–304.

  17. Lum S, Bountziouka V, Sonnappa S, Cole TJ, Bonner R, Stocks J. How “healthy” should children be when selecting reference samples for spirometry? Eur Respir J. 2015;45(6):1576–81.

  18. Lum S, Bountziouka V, Sonnappa S, Wade A, Cole TJ, Harding S, et al. Lung function in children in relation to ethnicity, physique and socio-economic factors. Eur Respir J. 2015;46(6):1662–71.

  19. Lee S, Bountziouka V, Lum S, Stocks J, Bonner R, Naik M et al. Ethnic variability in body size, proportions and composition in children aged 5 to 11 years: is ethnic-specific calibration of bioelectrical impedance required? PLoS One 2014; 9(12). Available from: https://doi.org/10.1371/journal.pone.0113883.

  20. De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–7.

  21. Wells JCK. Toward body composition reference data for infants, children, and adolescents. Adv Nutr. 2014;5(3):320s–9s.

  22. Weber D, Moore RH, Leonard MB, Zemel BS. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am J Clin Nutr. 2013;98(1):49–56.

  23. Nakao T, Komiya S. Reference norms for a fat-free mass index and fat mass index in the Japanese child population. J Physiol Anthropol Appl Hum Sci. 2003;22(6):293–8.

  24. Kim K, Hong S, Kim EY. Reference values of skeletal muscle mass for Korean children and adolescents using data from the Korean National Health and nutrition examination survey 2009-2011. PLoS One. 2016;11(4):e0153383. https://doi.org/10.1371/journal.pone.0153383.

  25. Currie CE, Elton RA, Todd J, Platt S. Indicators of socioeconomic status for adolescents: the WHO health behaviour in school-aged children survey. Health Educ Res. 1997;12(3):385–97.

  26. D’Haese S, De Meester F, De Bourdeaudhuij I, Deforche B, Cardon G. Criterion distances and environmental correlates of active commuting to school in children. Int J Behav Nutr Phys Act 2011; 8(88). Available from: https://doi.org/10.1186/1479-5868-8-88.

  27. Ermagun A, Samimi A. Promoting active transportation modes in school trips. Transp Policy. 2015;37:203–11.

  28. Yu C, Zhu X. From attitude to action: what shapes attitude toward walking to/from school and how does it influence actual behaviors? Prev Med. 2016;90:72–8.

  29. Ilie S, Sutherland A, Vignoles A. Revisiting free school meal eligibility as a proxy for pupil socio-economic deprivation. Br Educ Res J. 2017;43(2):253–74.

  30. Department for Communities and Local Government. The English indices of deprivation 2010. London: Crown Publishing; 2011.

  31. Dickinson LM, Basu A. Multilevel Modeling and Practice-Based Research. Ann Fam Med. 2005;3(S1):S52–60.

  32. Peugh JL. A practical guide to multilevel modeling. J Sch Psychol. 2010;48(1):85–112.

  33. Falconer CL, Park MH, Croker H, Kessel AS, Saxena S, Viner RM et al. Can the relationship between ethnicity and obesity-related behaviours among school-aged children be explained by deprivation? A cross-sectional study. BMJ Open 2014; 4(1). Available from: https://doi.org/10.1136/bmjopen-2013-003949.

  34. Hedeker D. A mixed-effects multinomial logistic regression model. Stat Med. 2003;22(9):1433–66.

  35. Gatrell AC, Elliot SJ, editors. Geographies of Health; An Introduction. 3rd ed. Oxford: Wiley-Blackwell; 2015.

  36. Snijders TAB, Bosker RJ, editors. Multilevel Analysis – An Introduction to Basic and Advanced Multilevel Modeling. 2nd ed. London: SAGE Publications Ltd; 2012.

  37. Heelan KA, Donnelly JE, Jacobsen DJ, Mayo MS, Washburn R, Greene I. Active commuting to and from school and BMI in elementary school children – preliminary data. Child Care Health Dev. 2005;31(3):341–9.

  38. Masoumi HE. Active transport to school and children’s body weight. A systematic review. Tema J Land Use Mobility Env. 2017;10(1):95–110.

  39. Sarmiento OL, Lemoine P, Gonzales SA, Broyles ST, Denstel KD, Larouche R, et al. Relationships between active school transport and adiposity indicators in school-age children from low-, middle- and high-income countries. Int J Obes Suppl. 2015;5(S2):S107–14.

  40. Sun Y, Liu Y, Tao F. Associations between active commuting to school, body fat, and mental well-being: population-based, cross-sectional study in China. J Adolesc Health. 2015;57(6):679–85.

  41. Cairney J, Veldhuizen S. Organized sport and physical activity participation and body mass index in children and youth: a longitudinal study. Prev Med Rep. 2017;6:336–8.

  42. Dunton G, McConnell R, Jerrett M, Wolch J, Lam C. Gilliland et al. organized physical activity in young school children and subsequent 4-year change in body mass index. Arch Pediatr Adolesc Med. 2012;166(8):713–8.

  43. Quinto Romani A. Children’s weight and participation in organized sports. Scand J Public Health. 2011;39(7):687–95.

  44. Steiner RP, Brandstetter S, Prokopchuk D, Wartha O, Klenk J, Peter R, et al. Relationship of sports Club participation with Bmi Z-score and sport motor function in children. Med Sci Sports Exerc. 2008;40(5):S412 (Abstract 2249).

  45. Marques A, Ekelund U, Sardinha LB. Associations between organized sports participation and objectively measured physical activity, sedentary time and weight status in youth. J Sci Med Sport. 2016;19(2):154–7.

  46. Vella SA, Cliff DP, Okely AD, Sculle ML, Morley BC. Associations between sports participation, adiposity and obesity-related health behaviors in Australian adolescents. Int J Behav Nutr Phys Act 2013; 10(113). Available from: https://doi.org/10.1186/1479-5868-10-113.

  47. El-Sayed AM, Scarborough P, Galea S. Ethnic inequalities in obesity among children and adults in the UK: a systematic review of the literature. Obes Rev. 2011;12(5):e516–34.

  48. Ness AR, Leary S, Reilly J, Wells J, Tobias J, Clark E, et al. The social patterning of fat and lean mass in a contemporary cohort of children. Int J Pediatr Obes. 2006;1(1):59–61.

  49. Mayor of London. Childhood Obesity in London. Greater London Authority, London. Report number: 978–1–84781-422-7, 2011.

  50. Chi DL, Luu M, Chu F. A scoping review of epidemiologic risk factors for pediatric obesity: implications for future childhood obesity and dental caries prevention research. J Public Health Dent. 2017;77(S1):S8–S31.

  51. Hawkins SS, Cole TJ, Law C. Millenium cohort study child health group. An ecological systems approach to examining risk factors for early childhood overweight: findings from the UK millennium cohort study. J Epidemiol Community Health. 2008;63(2):147–55.

  52. Kimbro RT, Denney JT. Neighborhood context and racial/ethnic differences in young children’s obesity: structural barriers to interventions. Soc Sci Med. 2013;95:97–105.

  53. Taveras EM, Gillman MW, Kleinman K, Rich-Edwards JW, Rifas-Shiman SL. Racial/ethnic differences in early life risk factors for childhood obesity. Pediatrics. 2010;125(4):686–95.

  54. Achat HM, Stubbs JM. Socio-economic and ethnic differences in the prevalence of overweight and obesity among school children. J Paediatr Child Health. 2014;50(10):e77–84.

Click to access the login or register cheese