The Association between Lifelong Greenspace Exposure and 3-Dimensional Brain Magnetic Resonance Imaging in Barcelona Schoolchildren


Proponents of the biophilia hypothesis believe that contact with nature, including green spaces, has a crucial role in brain development in children. Currently, however, we are not aware of evidence linking such exposure with potential effects on brain structure.


We determined whether lifelong exposure to residential surrounding greenness is associated with regional differences in brain volume based on 3-dimensional magnetic resonance imaging (3D MRI) among children attending primary school.


We performed a series of analyses using data from a subcohort of 253 Barcelona schoolchildren from the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) project. We averaged satellite-based normalized difference vegetation index (NDVI) across 100-m buffers around all residential addresses since birth to estimate each participant’s lifelong exposure to residential surrounding greenness, and we used high-resolution 3D MRIs of brain anatomy to identify regional differences in voxel-wise brain volume associated with greenness exposure. In addition, we performed a supporting substudy to identify regional differences in brain volume associated with measures of working memory (d′ from computerized n-back tests) and inattentiveness (hit reaction time standard error from the Attentional Network Task instrument) that were repeated four times over one year. We also performed a second supporting substudy to determine whether peak voxel tissue volumes in brain regions associated with residential greenness predicted cognitive function test scores.


Lifelong exposure to greenness was positively associated with gray matter volume in the left and right prefrontal cortex and in the left premotor cortex and with white matter volume in the right prefrontal region, in the left premotor region, and in both cerebellar hemispheres. Some of these regions partly overlapped with regions associated with cognitive test scores (prefrontal cortex and cerebellar and premotor white matter), and peak volumes in these regions predicted better working memory and reduced inattentiveness.


Our findings from a study population of urban schoolchildren in Barcelona require confirmation, but they suggest that being raised in greener neighborhoods may have beneficial effects on brain development and cognitive function.

Read the Research



  • Bowler D, Buyung-Ali L, Knight T, Pullin A. 2010A systematic review of evidence for the added benefits to health of exposure to natural environmentsBMC Public Health10:456, PMID: 20684754, doi:10.1186/1471-2458-10-456. CrossrefMedlineGoogle Scholar
  • Conners CK, Multi-Health Systems Staff. 2000Conners’ Continuous Performance Test II: Computer Program for Windows Technical Guide and Software ManualNorth Tonwanda, NY:Multi-Health SystemsGoogle Scholar
  • Dadvand P, Nieuwenhuijsen MJ, Esnaola M, Forns J, Basagaña X, Alvarez-Pedrerol M. 2015aGreen spaces and cognitive development in primary schoolchildrenProc Natl Acad Sci U S A112(26):7937–7942, PMID: 26080420, doi:10.1073/pnas.1503402112. CrossrefMedlineGoogle Scholar
  • Dadvand P, Rivas I, Basagaña X, Alvarez-Pedrerol M, Su J, De Castro Pascual M, et al.2015bThe association between greenness and traffic-related air pollution at schoolsSci Total Environ523:59–63, PMID: 25862991, doi:10.1016/j.scitotenv.2015.03.103. CrossrefMedlineGoogle Scholar
  • Dadvand P, Sunyer J, Basagaña X, Ballester F, Lertxundi A, Fernández-Somoano A, et al.2012Surrounding greenness and pregnancy outcomes in four Spanish birth cohortsEnviron Health Perspect120(10):1481–1487, PMID: 22899599, doi:10.1289/ehp.1205244. LinkGoogle Scholar
  • Dadvand P, Wright J, Martinez D, Basagaña X, McEachan RRC, Cirach M, et al.2014Inequality, green spaces, and pregnant women: roles of ethnicity and individual and neighbourhood socioeconomic statusEnviron Int71:101–108, PMID: 24997306, doi:10.1016/j.envint.2014.06.010. CrossrefMedlineGoogle Scholar
  • Escobedo FJ, Kroeger T, Wagner JE. 2011Urban forests and pollution mitigation: Analyzing ecosystem services and disservicesEnviron Pollut159(8–9):2078–2087, PMID: 21316130, doi:10.1016/j.envpol.2011.01.010. CrossrefMedlineGoogle Scholar
  • Fedewa AL, Ahn S. 2011The effects of physical activity and physical fitness on children’s achievement and cognitive outcomesRes Q Exerc Sport82(3):521–535, PMID: 21957711, doi:10.1080/02701367.2011.10599785. CrossrefMedlineGoogle Scholar
  • FIL (Functional Imaging Laboratory) Methods Group (and Honorary Members). 2013SPM8 Manual [accessed 26 June 2017]. Google Scholar
  • Forns J, Esnaola M, López-Vicente M, Suades-González E, Alvarez-Pedrerol M, Julvez J, et al.2014The n-back test and the attentional network task as measures of child neuropsychological development in epidemiological studiesNeuropsychology28(4):519–529, PMID: 24819069, doi:10.1037/neu0000085. CrossrefMedlineGoogle Scholar
  • Friedman LA, Rapoport JL. 2015Brain development in ADHDCurr Opin Neurobiol30:106–111, PMID: 25500059, doi:10.1016/j.conb.2014.11.007. CrossrefMedlineGoogle Scholar
  • Gidlöf-Gunnarsson A, Öhrström E. 2007Noise and well-being in urban residential environments: the potential role of perceived availability to nearby green areasLandsc Urban Plan83(2):115–126, doi:10.1016/j.landurbplan.2007.03.003. CrossrefGoogle Scholar
  • Grandjean P, Landrigan PJ. 2014Neurobehavioural effects of developmental toxicityLancet Neurol13(3):330–338, PMID: 24556010, doi:10.1016/S1474-4422(13)70278-3. CrossrefMedlineGoogle Scholar
  • Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B. 2010The concurrent validity of the N-back task as a working memory measureMemory18(4):394–412, PMID: 20408039, doi:10.1080/09658211003702171. CrossrefMedlineGoogle Scholar
  • James P, Banay RF, Hart JE, Laden F. 2015A review of the health benefits of greennessCurr Epidemiol Rep2(2):131–142, PMID: 26185745, doi:10.1007/s40471-015-0043-7. CrossrefMedlineGoogle Scholar
  • Kahn PH. 1997Developmental psychology and the biophilia hypothesis: children’s affiliation with natureDev Rev17(1):1–61, doi:10.1006/drev.1996.0430. CrossrefGoogle Scholar
  • Kahn PH, Kellert SR. 2002Children and Nature: Psychological, Sociocultural, and Evolutionary InvestigationsCambridge, MA:MIT PressCrossrefGoogle Scholar
  • Kellert SR. 2005Building for Life: Designing and Understanding the Human-Nature ConnectionWashington, DCIsland PressGoogle Scholar
  • Kellert SR, Wilson EO. 1993The Biophilia HypothesisWashington, DC:Island PressGoogle Scholar
  • Klatte M, Bergström K, Lachmann T. 2013Does noise affect learning? A short review on noise effects on cognitive performance in childrenFront Psychol4:578, PMID: 24009598, doi:10.3389/fpsyg.2013.00578. CrossrefMedlineGoogle Scholar
  • Owen AM, McMillan KM, Laird AR, Bullmore E. 2005N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studiesHum Brain Mapp25(1):46–59, PMID: 15846822, doi:10.1002/hbm.20131. CrossrefMedlineGoogle Scholar
  • Pujol J, Fenoll R, Macià D, Martínez-Vilavella G, Alvarez-Pedrerol M, Rivas I. 2016aAirborne copper exposure in school environments associated with poorer motor performance and altered basal gangliaBrain Behav6(6):e00467, PMID: 27134768, doi:10.1002/brb3.467. CrossrefMedlineGoogle Scholar
  • Pujol J, Martínez-Vilavella G, Macià D, Fenoll R, Alvarez-Pedrerol M, Rivas I, et al.2016bTraffic pollution exposure is associated with altered brain connectivity in school childrenNeuroImage129:175–184, PMID: 26825441, doi:10.1016/j.neuroimage.2016.01.036. CrossrefMedlineGoogle Scholar
  • Rook GA. 2013Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to healthProc Natl Acad Sci U S A110(46):18360–18367, PMID: 24154724, doi:10.1073/pnas.1313731110. CrossrefMedlineGoogle Scholar
  • Rueda MR, Fan J, McCandliss BD, Halparin JD, Gruber DB, Lercari LP, et al.2004Development of attentional networks in childhoodNeuropsychologia42(8):1029–1040, PMID: 15093142, doi:10.1016/j.neuropsychologia.2003.12.012. CrossrefMedlineGoogle Scholar
  • Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI. 2005Training, maturation, and genetic influences on the development of executive attentionProc Natl Acad Sci U S A102(41):14931–14936, PMID: 16192352, doi:10.1073/pnas.0506897102. CrossrefMedlineGoogle Scholar
  • Shelton JT, Elliott EM, Matthews RA, Hill BD, Gouvier WD. 2010The relationships of working memory, secondary memory, and general fluid intelligence: working memory is specialJ Exp Psychol Learn Mem Cogn36(3):813–820, PMID: 20438278, doi:10.1037/a0019046. CrossrefMedlineGoogle Scholar
  • Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, et al.2011REST: A toolkit for resting-state functional magnetic resonance imaging data processingPLoS One6(9):e25031, PMID: 21949842, doi:10.1371/journal.pone.0025031. CrossrefMedlineGoogle Scholar
  • Spanish Ministry of Public Works. 2012Atlas de la Vulnerabilidad Urbana en España 2001 y 2011: Metodología, contenidos y créditos (Edición de diciembre de 2015) [in Spanish] [accessed 27 May 2016]. Google Scholar
  • Stoodley CJ, Valera EM, Schmahmann JD. 2012Functional topography of the cerebellum for motor and cognitive tasks: an fMRI studyNeuroImage59(2):1560–1570, PMID: 21907811, doi:10.1016/j.neuroimage.2011.08.065. CrossrefMedlineGoogle Scholar
  • Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, López-Vicente M, et al.2015Association between Traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort studyPLoS Med12(3):e1001792, PMID: 25734425, doi:10.1371/journal.pmed.1001792. CrossrefMedlineGoogle Scholar
  • UN Department of Economic and Social Affairs. 2015World Urbanization Prospects: The 2014 RevisionNew York, NY:United NationsGoogle Scholar
  • USGS (U.S. Geological Survey). 2015NDVI, the foundation for remote sensing phenology [accessed 21 July 2017]. Google Scholar
  • Wilson EO. 1984BiophiliaCambridge, MA:Harvard University PressGoogle Scholar
Click to access the login or register cheese